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Cyclotron resonance of a polaron 
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TCM, Cavendish Laboratory, Madingley Rd, Cambridge, CB3 OHE, Great Britain 

Received 9 December 1982 

Abstract. The theory of the mass shift and the linewidth of the cyclotron resonance of a 
polaron is given. The lineshape function which was obtained earlier by the author on the 
basis of the path-integral method with an optimised model is utilised. This formula has 
the particular advantage of being applicable on a unified footing to electron-phonon 
interactions of any strength, elastic or inelastic. Applications are made to the Frohlich 
polaron system and explicit analytical expressions are obtained for the first time for some 
limiting cases of interest. 

1. Introduction 

The quantum theory of the cyclotron resonance of electrons coupled to phonons was 
formulated by Kawabata (1967). His theory, based on Mori’s formalism (1966) of the 
generalised Langevin equation, enables one to treat the case where the electron- 
phonon interaction is weak and elastic. Theoretical investigations of the cyclotron 
resonance of piezo-electric polarons were performed subsequently by Saitoh and 
Kawabata (1967) based on this method, and later by Miyake (1968) in the Green 
function method. 

When the electron-phonon interaction is inelastic such as in the Frohlich polaron 
(Frohlich 1954) where the optical phonon with finite energy is involved, extensive 
investigations of the energy states in a magnetic field have been performed (see e.g. 
for review Larsen 1972, Saitoh 1980b, 1981, Arisawa and Saitoh 1981, Peeters and 
Devreese 1981a, b, 1982a, b, and references contained in these papers), but the study 
of the dynamical properties of a polaron is mostly limited to the static magneto- 
resistance in the weak coupling limit (see e.g. for review Kubo er a1 1965, Gurevich 
and Firsov 1961, Dworin 1965), except for the calculation of the cyclotron resonance 
lineshape by Nakayama (1969’) when the cyclotron frequency is near the optical 
phonon energy. When the magnetic field is so high that the Landau quantisation 
becomes important, theoretical understanding of the cyclotron resonance for either 
inelastic scatterings or strong couplings, e.g. how the linewidth is related to the lifetime 
of the Landau states, is far from complete. 

In order to fill this gap, in an earlier paper (Saitoh 1982) theoretical attempts were 
made to formulate magneto-conductivity for the general class of electron-phonon 
interactions of both elastic and inelastic scatterings and of weak and strong interactions. 
There, the Feynman path-integral method (Feynman 1955) was employed in which 
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all the dynamical variables of the phonons were eliminated at the expense of the 
complicated non-local (in time) interaction of electrons with themselves, and the 
resulting non-local interaction was approximately simulated by an optimised model 
(Saitoh 1980a, 1981, Adamowski er al 1980) which contained variational functions 
with an infinite number of variational parameters. The variational functions were 
chosen so that the free energy was minimised, and they satisfied a set of nonlinear 
integral equations. The conductivity was calculated from the thermal-double-time 
correlation function in the representation of the single path-integral, and was expressed 
by the memory functions. This formula was applicable to all coupling constants and 
temperatures once these variational functions were determined. Applications were 
made to calculate the magneto-resistance of the Frohlich polaron for both weak and 
strong coupling cases. 

The aim of this paper is to investigate the effective mass and the linewidth of the 
cyclotron resonance based on the previously obtained general magneto-conductivity 
expression. Explicit analytical expressions will be given for the case of the Frohlich 
polaron for the limiting cases of weak and strong couplings. New results are presented 
for the case of strong magnetic fields. In order to obtain the results for the intermediate 
range where either the coupling or the magnetic field is neither very weak nor very 
strong, numerical analyses are necessary. This is not pursued in this work. 

Section 2 gives a brief outline of the resonance lineshape function, and evaluation 
of the mass shift and the linewidth is made in 9: 3 for low magnetic fields and in 8 4 
for high fields. When the magnetic field is low, we recover the semiclassical Drude 
formula as expected. When the magnetic field is high, on the other hand, the Landau 
quantisation becomes important, and completely new features come in. For example, 
the cyclotron mass shift becomes smaller than the bare band mass and the linewidth 
is no longer a simple combination of lifetimes of the two lowest Landau states. The 
last section is devoted to discussion and summary. In the appendix, an expression of 
the memory function in the weak coupling limit is given for the general form of the 
electron-phonon interaction. 

2. Formula for the absorption line-shape 

When a static magnetic field H is applied along the z axis of the system, and a 
circularly polarised electric field with angular frequency w is introduced along H, the 
absorption lineshape of the cyclotron resonance is proportional to the magneto- 
conductivity 

Re u,-(w ) = Re[cT,, ( U )  - i(ux, ( U )  -cy, (a)) +U,) (w 11 (2.1) 

where u , , ( w )  is the conductivity tensor with i and j standing for the components of 
the Cartesian coordinates. In a previous paper (Saitoh 1981), we developed the 
conductivity formula for an electron coupled to phonons through the interaction 
Hamiltonian 

where rq is the coupling function, b, and b: are, respectively, destruction and creation 
operators of a phonon with wavevector q and angular frequency a,, and r is the 
position vector of an electron. We have evaluated the thermal-double-time correlation 
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function in the path-integral representation by using the optimised model where a 
trial action is used with an infinite number of variational parameters which are 
determined by the minimisation principle of free energy, The magneto-conductivity 
tensor can be expressed as the analytic continuation of the thermal correlation function 
thus obtained. The final result is given by 

(2.3) 

where Ne is the electron number density, -e the electronic charge, m the bare band 
mass of an electron, U ,  = le/H/mc the cyclotron frequency and M,(w) the memory 
function. The memory function in general satisfies 

Re (+ , - (U)  = (2Nee2h/m) Re[i(w -w, )+M,(w)] -~  

M _ ( w )  =MT ( - U ) ,  Re M _ ( w )  3 0. (2.4) 

In  our particular approximation, the memory function has the form 

M _ ( w )  = ( dT (cosh h w ~  - ~ ) L , ( T )  
h w  

clc; 

- i s inh ihap  Io dt e-ih'"tL_(it+ip)) 

where p is the inverse temperature, and the function L1(7) is defined by 

Here, q L ,  qz are the wavevectors' perpendicular and parallel components to the 
magnetic field, and 

d v q ( ~ )  = (N,  + 1) e-*RqT + N q  ehnqr = cosh[hn,(r -p/2)]/sinh(hflqP/2) (2.7) 

with N, the Planck distribution function for a phonon with wavevector q and angular 
frequency nq, and ~ I - ( T )  and A I ~ ( T )  are symmetric functions such that A L ( ~ )  = 1i-(p - T )  

etc, and satisfy a set of coupled equations (2.91, (2.10), (2.14) and (2.18) of Saitoh 
(1982). 

For the explicit evaluation of M A ( @ ) ,  we need to know these solutions i1_(~)  and 
A ~ I ( T )  of the coupled equations. In some limiting cases of interest, analytic forms are 
available. In the weak coupling limit of the electron-phonon interaction, we can 
replace ' I _ ( T )  and AI / (T )  in (2.6) by their zeroth-order approximants .A'_~'(T) and >\~O'(T) 

where 

(2.9) 1211 (01 ( ~ ) = T ~ ~ - - T / ~ ) ~ A ( " ( ~ ) ,  

since L _ ( T )  itself is already proportional to ri. 
In the strong coupling case, on the other hand, the functions A,(T) and AII (T )  are 

dependent on the form of r : N , ( T ) ,  and we do not have a general solution, and have 
to specify the nature of the interactions to proceed further. The explicit evaluation 
of the memory function M,(w) will be given in the following sections for the case of 
the Frohlich polaron. 
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3. Case of low magnetic fields 

When a magnetic field is small, we are allowed to replace A1(7) and A~I (T )  by their 
zero magnetic field value A(T) ,  the error being of the order of H Z .  The memory 
function is no longer dependent on the magnetic field in this case, and is given by its 
zero-field value. Hence, we drop the subscript i in this section. Since w C  is small, 
we only need to know M ( w )  for small W .  Then the memory function M ( w )  may be 
expanded as 

M ( w )  = M ( O ) + i w [ d  ImM(w)/dw],=, (3.1) 

and the lineshape takes the form 

2Nee2h r 
Re a A - ( w )  = ~ 

m, (W - eH/m,c + r2 
where 

(3.3) 

(3.4) 

Here, m t  and r-' are the transport mass and the collision time for the DC electric 
field. should not be confused with rq. This is nothing but the usual semiclassical 
Drude formula where everything is expressed in terms of the DC values. The formula 
(3.2) suggests that polarons with effective mass m, are good physical pictures to 
describe elementary excitations in low magnetic fields (Larsen 1969, Saitoh 1980b). 

In the following, we consider the case of the Frohlich polaron. In the conventional 
non-dimensional units such that h, the electron band mass m and the optical phonon 
frequency flq = constant are taken to be unity, the coupling function rq takes the form 

r;: = 2 J L a /  vq2 (3.5) 

where (Y is the Frohlich coupling constant and V the volume of the system. In this 
case, we have from (2.6) 

When the coupling is weak, i.e. (Y << 1, A(T)  in (3.6) may be replaced by its 
zeroth-order approximant (2.9). Putting (3.6) into (2.5), we obtain after some algebra 

(3.7a) 

(3.76) 

where I, and K ,  are the modified Bessel functions of the first and second kinds, 
respectively, and S(x) is the signature function which is equal to either +1 or -1 
according as x is positive or negative. These results were implicitly contained in the 
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work of Feynman et a1 (1962) and Devreese (private communication), but have not 
been given explicitly before. From these results, we obtain 

m t -  1 = [ a P 2 J z / 6  sinh(p/2)l[MlP)(l-  l/B)--11(kp)l, (3.8) 

(3.9) r = zap ( p / ~ ) ” *  K1(p/2)/sinh(P/2). 

The asymptotic formulae for very low temperature (p  >> 1) and for very high tem- 
perature ( p  << 1) are given by 

( 3 . 1 0 ~ )  

(3.10b) 

( 3 . 1 1 ~ )  

(3.11 6)  

It is well known that r-’ at low temperature differs unfortunately from the DC collision 
time obtained by the Boltzmann equation (Kadanoff 1953, Langreth and Kadanoff 
1964, Langreth 1967) by the factor of 3/2p. It should be remarked that the transport 
mass mt at low temperature increases with temperature as expected. This temperature 
dependence is in marked contrast to that of the magnetic mass and the inertial mass 
(Saitoh 1980a, b, Saitoh and Arisawa 1980, Arisawa and Saitoh 1981) which are 
decreasing functions of temperature. This is understandable since the latter two masses 
are defined through the static correlation functions which are related to the real part 
of the free energy, whereas the transport mass is related to the dissipative part. The 
thermal averaging procedures of each mass are different and consequently result in 
the different temperature dependence. At zero temperature, however, all these masses 
become identical. 

Next we consider the strong coupling case. In this case the Feynman model action 
(Feynman 1955) is a good description (Saitoh 1980a), and the approximate solution 
to ‘\(T) is given by 

), (3.12) 
U’- 1 cosh(u@/2)-cosh v ( ~ - P / 2 )  

V sinh(vp/2) 

where 

t‘ = 4a2/9rr. (3.13) 

In this case, the calculation proceeds exactly in the same way as the one done by 
Feynman et a1 (1962). For the first term of M ( w )  of (2.5), we put 

h ( 7 )  = 1 / V  (3.14) 

since ti >> 1, and for the second term 

h(it + p / 2 )  = ( t2+u2) /pu2  (3.15) 

where 

U =(p( ip  +[[ ( t i2 -1) /~]coth  f ~ / 3 ) } ” ~ = [ ~ ( y  +p/4)]”* (3.16) 

and we have discarded an oscillatory term COS ut in (3.12) since this contributes to 
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the final result in the negligible order of e-aL for w << 1. We have finally 

M(w)=--=- - 
iw sinh(pw/2) (up)312 

2av312( 3Ji7 l - w 2  + sinh(P/2) 2wa 

(3.17) 

for U >> 1, a >> 1 and w K 1. Therefore, we recover the well known result for the 
cffective mass (Feynman 1955) 

(3.18) m, = ~ C Y V ~ / ~ / ~ J ; =  16a4/81i7 2 . 

The linewidth differs from Re M(Oj by the factor of the effective mass as seen in (3.4) 
and therefore 

(3.19) 

where in the last line the asymptotic formula of K l ( a )  for a >> 1 has been used. The 
linewidth is extremely sharp because of the exponential factor in (3.19). This suggests 
that the important part of the electron-phonon interaction is taken care of by the 
renormalisation of the effective mass and the remaining scattering effect is small in 
the strong coupling limit. 

4. High magnetic field case 

In this case  hi(^) is inversely proportional to w c  in general and hence much smaller 
than iill(r). By performing the q summation in (2.61, we have for the Frohlich polaron 
case 

L,(7j =- - ~ n - -  -) 
- ___  

CY cosh (~-P /2 )  1 2JA~lJlZ~~ - A, J%+ Jh;1- A, 

44; sinh(p/2) (.11,- Ai13’2 J.11, - J.4 I - A, 

14.11 

In the following, we study the limiting cases of very weak and strong couplings. 
We first consider the weak coupling limit. Putting (4.1) into (2.5) with the use of 
(2.8) and (2.91, we have the expression for M ! ) ( w )  for high magnetic fields. Since 
the resonance occurs at w = w c  + O(a ), we only need to calculate M:“ (wJ .  We note 
the identity 

and expand cosh[w,(T -P/2)] in i l y o ) ( T )  in the series in cosh[nw,(r -p/2)1. Then, by 
changing the variable 7 = @/2)(1 -U), and introducing the abbreviation 

2 = pwc/2 (4.3) 
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we have for the first integral in the bracket of (2.5) 

io 

+ sinh2 z 1 e-.‘[ I,( nz  + 7) - Lo( nz +$)I]. 
s = * l  n = l  

In passing to the last line use has been made of the formula 

(4.4) 

where lo is the modified Bessel function of the first kind and b is the modified Struve 
function. Using the expression for cos t similar to (4.2) and utilising the formula 

we can calculate the second term in the bracket of (2.5). Combining together, we reach 

30 

+cosh% c = + l  1 n = l  1 exp[-(n - l ) ~ w c / 2 ] K o [ ~ p ( n w c + ~ ) l ] ] .  (4.7) 

This means, if we write the absorption lineshape in a form (3.2), where now the mass 
in the front factor is replaced by the bare band mass m and the resonance is 
characterised by the cyclotron mass m, to stress the high magnetic field case, then 
the cyclotron mass is given by 

(4.8) mc = (1 +[aJ?Tp/4wC sinh(P/2)]l0($p)}-’. 

The linewidth is 

r = [a /2  s i n h ( ~ / 2 ) 1 ( ( ~ / r r ~ ’ ” K ~ ( ~ / 2 ~  + [cosh(p /2)1 /J~)  (4.9) 

in the high magnetic field limit where we have used the asymptotic formula for K o ( z ) .  
It should be noted that the cyclotron mass m, at high field is smaller than the bare 
band mass and its asymptote at very low and high temperatures is given by 

-1 m ,  = 
1 + (a/2wc)( 1 + 1/4p + . . . ) (P  >> 11, ( 4 . 1 0 ~ )  

1 +(*/2wc)(.rr/p)1’2(1 +i’I(p/2)2+ . . * )  ( p  << 1). (4.10b) 

This decrease of the cyclotron mass can be understood in terms of the so-called pinning 
effect (Larsen and Johnson 1966, Nakayama 1969). The low-temperature result 
indicates that the lowest-order perturbational correction to the separation between 
the Landau states n = 0 and 1 is given by 

hA=E:” - E t )  = ( a /2 )hn  (4.11) 

for high magnetic fields. In fact, it can be proved more generally that for any magnetic 
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field, the perturbational result for the energy separation agrees precisely with 
-)I Im M y )  (U,)  at zero temperature. Namely, our formula for m, at zero temperature 
is exact to the first order in r: for all magnetic fields. The proof is given in the next 
section. 

The linewidth consists of two contributions: the first term from the intra-band 
scattering, namely scattering within the same Landau sub-band index, and the other 
from the inter-band scattering. At low temperature, the inter-band scattering is more 
important. This is because the relaxation of the lowest Landau state is proportional 
to the phonon number which is exponentially small for optical phonons, while the 
decay channel of the n = 1 state is always open irrespective of temperature, though 
this process is reduced by the density of states factor 6~:~'~. It should be emphasised 
that r is not a simple function of the inverse lifetimes of the two lowest Landau states, 
because the relaxation time of the current is in general different from these lifetimes. 
This point was first emphasised by Kawabata (1967). 

Next, we consider the strong coupling limit. When cy >> 1 and w ,  >>a2 >>p-l ,  it is 
known (Saitoh 1981) that the approximate forms for A,(T) and 1111(~) are given by 

L' 'H - 1 cosh(pce/2) - cosh t'H ( T  -p /2)  
L'H L'H sin h ( U 2) 

where 

14.13) 

y = o,(l +a2A/27Tw,), (4.14) 

S = cy2A/27r, (4.15) 

(4.16) 2 2  
L ' H = ( Y  A 177, 

with 

A = 1n(27Tw,/e2a2). (4.17) 

Since y >> S >> 1, we simplify ,I,(T) as 

. l - ( r )  = (2/wc)[l -cosh Y ( T  -p/2) /2  cosh(y@/2)] 14.18) 

and anticipating that the resonance occurs at w - y >>we, we disregard the term 
cosh(vH(r - p / 2 ) )  in . I , ~ ( T )  and employ the form 

.I,,(T) = [ b 2 - ( 7  - p / 2 ) 2 ] / p ~ ;  (4.19) 

where 

b 2 = p { b p  + [ ( C L  - l ) / t ' ~ ]  COth f L ' ~ p } ~ p ( t ' ~  + p / 4 ) .  14.20) 

If we put (4.18) and (4.19) into (4.1) and then into (2.5), we have the expression 
M , ( w )  in a high magnetic field. For the first integral and imaginary part of the second 
term in 12.51, we may set 

(4.21) 

since b >> 1. Using the formula (4.2) and a similar expression for cos I, we reach after 

. I l l  == b '/@U $ 
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some algebra 
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In order to find the resonance point 

w - w,+  Im M _ ( w )  = 0 (4.23) 

we retain the first term and n = 1 terms in the sum of Im M _ ( w )  which might become 
large at w - y, the remaining sum being of the order of y-l  and negligible. The answer 
is given by 

(4.24) 

when uH >>p/4. Therefore (w  -y)- '  = O(c"1h-1'2)<< 1 and the first term in the sum 
of ImM,(w) is negligible in spite of its divergent appearance. This is equivalent to 
saying that the sum in Im M J w )  can be discarded from the start. In other words, the 
intra-band scattering is unimportant in the strong coupling limit in contrast to the 
weak coupling case. The cyclotron mass to the accuracy a 2  is given by 

w = y + O(ah 1'2) 

mc= (1 +a2A/2rrwc)-' (4.25) 

which is exactly the same result that was inferred before from the free energy expression 
(Saitoh 1981). The cyclotron mass is again smaller than the bare band mass. This 
can be understood qualitatively in the following way. In the strong coupling case, the 
phonon polarisation field acts on an electron as an effective attractive potential so 
that the energy separation between the ground state and the excited states will in 
general be increased. 

The linewidth is given by 

= ~ a t . H ( P / ~ ) " 2 K o ( b ) / s i n h ( p / 2 ) .  (4.26) 

The linewidth mainly comes from the intra-band scattering. The linewidth is very 
narrow in the strong coupling limit, indicating that the most important role of the 
electron-phonon coupling is to produce the self-trapping attractive potential and the 
residual scattering effect is small. A similar effect was observed in the low magnetic 
field case. 

5. Discussion and summary 

In order to understand the physical meaning of the formula (2.5) at a high magnetic 
field, let us consider the weak coupling limit. As will be shown in the appendix, our 
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result can be written in a form 

(m/2N,e2h)a,-(w) = [i(w -wc -  (A(k)),)  +(7TF1 (k))J1 (5.1) 

where angular brackets indicate the thermal average over k as defined by (A10) and 
h A ( k )  is the lowest-order perturbational correction due to the electron-phonon inter- 
action to the Landau splitting between the states n = 0 and 1, 

A ( k )  = ( E i " ' ( k ) - E ~ l ' ( k ) ) / h .  (5.2) 
- 1  

T~ ( k )  is the linewidth function given by 

+ s (E:o' ( k  ) - €A0) ( k  + qz - s ha, 1) (5.3) 

with ELo'(k) the unperturbed Landau energy in the state n. The cyclotron mass is 
related to the separation between the lowest and the first Landau states which were 
modified by the electron-phonon interaction. The linewidth ((TC' ( k ) ) ,  on the other 
hand is not a simple function of the inverse of the lifetimes of the two lowest states 
because of the modification brought by the current matrix element. In particular, 
when r'i is long ranged, the contribution of the small-wavevector scattering to the 
current relaxation is reduced appreciably. This phenomenon is sometimes called the 
(1 -cos e )  reduction in analogy to the transport process in the no magnetic field case 
(Mott and Jones 1958). 

Kawabata (1967) obtained a slightly different result from (5.2) in the case of weak 
electron-phonon interaction with elastic scattering. In order to appreciate the 
difference, let us introduce the mass operator f i , (wc)  symbolically written as 

(m/2Nee2h)c+-(w) = - w c )  + f i ~ ( U c ) I - ' ) p h ) e  (5.4) 

where the outside and inside brackets indicate, respectively, the appropriate canonical 
average over electron and phonon variables. He calculated the mass operator f i - ( w c )  
to the lowest order in ri by Mori's method (1966) and then performed the average 
over phonon variables. Since at this stage the average could not be performed 
rigorously, he replaced (5.4) by the following approximate form 

([i(w -wc) + ( f i - ( w ~ ) ) p h I - ~ ) c  ( 5 . 5 )  

( A ? ( W ~ ) ) , ~  = -iA(k) + T,' ( k )  

and obtained the result 

(5.6) 

where A ( k )  and r T ' ( k )  are the same functions defined above in (5.2) and (5.3). This 
formula is a bit different from ours (5.1) in the way of the thermal average over 
electron variables. Whether the approximation in passing from (5.4) to ( 5 . 5 )  is 
legitimate or not is an open question. In our derivation which results in (5.1) from 
(5.4) (Saitoh 1981), on the other hand, the average over phonon variables was 
performed rigorously first because of the very advantage of the path-integral method, 
and then a perturbation calculation was made for fiL(uc). Since no rigorous 
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justification for both the results is available to date to the best of the author’s 
knowledge, judgement as to which form is right remains for future study. 

If we disregard the above uncertainty, our formula (2.5) is most convenient to 
calculate the lineshape of the cyclotron resonance in the sense that there is no restriction 
on the strength of ri or inelasticity of scattering. We know no other theory which 
can treat the linewidth of the cyclotron resonance of a polaron strongly coupled to 
phonons with inelastic scattering on a unified way as presented here. It should be 
remarked also that at least at zero temperature our formula for the cyclotron resonance 
mass is exact to the lowest order in r: for any magnetic field. For, when the temperature 
is sufficiently low, from (5.1) we have 

Im M_(o , )  = -A(k = 0). (5.7) 

On the other hand, the left-hand side is by definition equal to (1 - m/m,)w,. Therefore, 
hw,m/m, becomes Am,+ hA(k = 0) which is the energy separation between the lowest 
and first Landau states as it should be. 

In conclusion, we have presented formulae for the absorption lineshape of the 
cyclotron resonance of a polaron. The present formula which is based on the path- 
integral method has the advantage over other theories that it is applicable to any type 
of electron-phonon interaction, whether they are strong or weak, elastic or inelastic. 
Existing theories are capable of treating only weak and elastic scatterings. Applica- 
tions were made to the Frohlich polaron system, and analytic expressions for the 
cyclotron mass shift and the lineshape were obtained for limiting cases of weak and 
strong couplings and low and high magnetic fields. The results for high magnetic fields 
are new. 
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Appendix. General form of ML(w,) in the weak coupling limit 

Here, we shall obtain M y )  (U,), the term proportional to I’i in the perturbational 
expansion of M-(w,). We start with the formula (2.5) where L,(T)  is given by (2.6) 
with A, and 1211 replaced by the zeroth approximants (2.8) and (2.9). We note the 
identity 

h’q 1 p h 2 k 2  h2kq, 
2mP 2m m 

exp( 2 r 2 )  = 2 F exp( 

where the sum runs over the one-dimensional wavevector k and 

Z = exp(-@h2k2/2m). 
k 
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2 2 ( 0 )  Using this trick, we can linearise the 7' term in exp(-h q l A  (7)/2m) which appears 
in the first integral in the bracket of (2.5). Applying a similar operation on 
exp[-h q z  A 2 2 (0 )  (it +@/2)/2m], we have 

M ' , " ! w C ) = ~ C e x p ( - p h 2 k 2 / 2 m ) C  1 
k sinh(hfl,p/2) 

x 1 ( i  J d7 [cosh hw,(r -p/2)  - 11 exp[y cosh h w , ~  - ( E  + shflq)7] 
, = * I  0 

oc 

+sinh z lo dt expi-ihw,t)exp[y cos ho,t - i ( E  + s h f l q ) t ] )  

where z is defined as before by (4.3) in the text, and the following abbreviations have 
been used: 

('44) 

(A51 

E = h2(qf + 2kqZ)/2m 

y = hq?/[2mwC sinh(Aw,/3/2)]. (A6) 

2 2 x =hqL/2mw,, 

Noting the identity 
m 

exp(y c o s h ~ ) = I o ( y ) + 2  1 I,(y)coshn.r 
n = l  

where In is the modified Bessel function of the first kind, we can expand 
exp( y cosh ~ w , T )  in a series in cosh nhwcr and perform the T integration term by 
term. Using a similar expression for exp( y cos t ) ,  we reach the result 

1 
sinh( hflqp/2) 

x 2 r i  exp(-x2 coth 2) 

where s = +1 or -1 corresponds, respectively, to a phonon emission or an absorption 
process, and 

E S  = E  +shf l ,  (A91 

and the brackets denote the thermal average for the one-dimensional degree of 
freedom 

(*) ,=Z- '  1 ( . )  exp(-ph2k2/2m). 
k 
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In particular, when t = hw~3/2  >> 1, namely the case of either very low temperature 
or very high magnetic fields, we may replace Zn(z) by its first term of the expansion 

~ , , ( y ) = x ~ "  e -"* /n!  ( A l l )  
and therefore 

Re M:" (U,) = 

(A12a) 

)).. (A12b) 
~ s - h ~ c  E S  n = l  ( n  + l ) ! ( ~ ~  +nhw, )  

In order to understand these results, let us consider the lowest perturbational correction 
to the lowest two Landau energies. They are given respectively by (Larsen 1972) 

x(-+-+ x 2 - 2  c X2n-2[X4-2(n + I ) ~ ~ + ~ ( ~  +1)3 1 

Therefore, comparing (A13) and (A14) with (A12b), we reach 

ImM:"(w,) = ( ~ A " ( k ) - ~ : " ( k ) ) , / h .  ('415) 

The linewidth cannot be interpreted simply as the inverse of the lifetimes of the n = 0 
and 1 states. This is due to the modifications brought by the current matrix elements 
which are different in principle from the matrix elements for the lifetime. 
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